
Received 8 August 2025, accepted 3 September 2025, date of publication 9 September 2025, date of current version 17 September 2025.

Digital Object Identifier 10.1109/ACCESS.2025.3607751

Hybrid Acoustic Fault Diagnosis in UAVs Using
Wavelet Scattering Transform
and Deep Learning
TEMEL SONMEZOCAK 1, (Member, IEEE), AND MERİH YILDIZ 2
1Department of Electrical and Electronics Engineering, Yeni Yuzyil University, Istanbul 34010, Türkiye
2Department of Electrical and Electronics Engineering, Doğuş University, Istanbul 34775, Türkiye

Corresponding author: Temel Sonmezocak (temel.sonmezocak@yeniyuzyil.edu.tr)

This work was supported by Inci Automation Ltd.

ABSTRACT Unmanned aerial vehicles (UAVs) are increasingly employed in defense, agriculture, and
logistics, where ensuring operational safety is critical. Propeller damages and rotor screw looseness represent
two major fault types that can compromise flight reliability. Previous studies have typically addressed these
faults separately, often relying on vibration analysis or conventional acoustic features. This paper introduces
a hybrid model that combines Wavelet Scattering Transform (WST) and Long Short-TermMemory (LSTM)
to simultaneously detect both fault types using microphone-recorded acoustic signals. Unlike traditional
Fourier-based approaches or deep learning models utilizing Mel-Frequency Cepstral Coefficients (MFCCs)
or spectrograms, the proposed framework leverages WST to extract deformation-stable, multi-resolution
features, which are then modeled through an LSTM network. The model was trained and tested on a dataset
comprising 750 one-second acoustic segments, approximately balanced between problem-free and faulty
classes using stratified sampling and cross-validation. By integrating time–frequency-based multi-layered
features into a time-sequential deep learning framework, the proposed model achieves reliable classification
of both propeller faults and rotor screw looseness, reaching a high accuracy of 98.93%. These results
highlight the potential of the WST-LSTM framework as a robust and innovative solution for UAV fault
diagnosis, particularly in acoustic-based monitoring scenarios

INDEX TERMS Acoustical signal processing, deep learning, propellers, fault diagnosis, spectral analysis,
unmanned aerial vehicles.

I. INTRODUCTION
Nowadays, unmanned aerial vehicles (UAVs) are exten-
sively utilized across a wide range of applications, including
agriculture, defense, mapping, and aerial photography [1],
[2], [3]. However, ensuring the reliability and safety of
these systems is of paramount importance. In particu-
lar, faults in propellers can lead to thrust loss, increased
power consumption, and structural issues caused by air-
frame resonance. Furthermore, the loosening of rotor fas-
tening components poses serious safety risks, such as the
potential detachment of propellers during flight, which can
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ultimately result in UAV crashes. Such mechanical failures
significantly threaten flight safety. In the literature, pro-
peller faults in UAVs have mostly been investigated using
vibration-based fault diagnosis techniques. Since these fail-
ures typically occur within the operational frequency range
below 250 Hz, the interaction between the damaged pro-
pellers and the system’s natural and operational frequencies
can be effectively analyzed through vibration signals. In par-
ticular, the root mean square (RMS) values observed in
each frequency band provide meaningful insights into fault
conditions [4], [5].

To effectively interpret vibration data, MEMS sensors
mounted on UAV airframes are typically used to capture
oscillations along both horizontal and vertical axes.
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While this approach introduces computational complex-
ity, classification algorithms such as decision tree (DT) and
support vector machine (SVM) have demonstrated high effi-
ciency in terms of computational performance.

These models are particularly suitable for detect-
ing low-frequency propeller faults operating in the
80–100 Hz range.

For instance, the use of 14 amplitude–frequency fea-
tures with the DT algorithm has achieved a classification
accuracy of 93.37%, whereas utilizing 64 features derived
from broader frequency bands with the SVM algorithm has
reached up to 98.21% accuracy [6]. Similarly, in our previous
study, a cost-effective vibration-based fault diagnosis model
for UAVs was developed using MEMS accelerometers and
gyroscopes.

The proposed approach relied exclusively on vibration
signals and employed DT & SVM based classification
algorithms [7].

In recent years, deep learning models that utilize vibration
sensor data across the UAV’s X, Y, and Z axes have also
gained popularity [8], [9]. Particularly for propeller faults,
hybrid systems combining wavelet transform [10], [11] and
deep neural networks using vibration signals within the oper-
ational band around 168 Hz have achieved classification
accuracy of approximately 91% [9]. However, when detecting
only propeller faults via vibration signals, frequency varia-
tions analyzed throughwavelet scattering and long short-term
memory (LSTM) networks have shown the potential to reach
up to 99% accuracy [12].
In addition, the literature indicates that sub-200 Hz vibra-

tions in UAVs can lead to structural deformations in the
arms and frame, as well as loosened joints and weld
defects [13], [14]. In this context, laboratory-based studies
have shown that screw loosening conditions can be detected
using Fuzzy Logic and Neural Network-based analyses [15].
However, under outdoor conditions, vibration amplitudes in
UAV arms and frames vary with different speeds and maneu-
vers, which may lead to inaccurate diagnoses.

The field of UAV health monitoring is not limited to fault
detection in propellers and structural arms but also encom-
passes overall system reliability and operational continuity.
In [16], a weight-based landing platform was proposed to
perform pre-flight safety inspections. This platform allows
for the analysis of parameters such as load imbalance and
deviations in the center of gravity, facilitating the identifica-
tion of potential anomalies. However, the proposed approach
is limited to pre-takeoff assessments. Even if the center of
gravity remains balanced during flight, localized thrust losses
caused by rotor or propeller faults can still affect the UAV’s
orientation. Such effects can be effectively detected using
machine learning-based approaches [17].
In recent years, significant progress has been made in

fault diagnosis studies on UAVs, particularly through the
use of acoustic signals and conventional machine learn-
ing methods. In this context, algorithms such as DT, SVM

and k-nearest neighbors (KNN) have been able to clas-
sify faults with high accuracy using statistical features such
as mean, standard deviation, variance, correlation, kurtosis,
and skewness. For example, classification accuracy exceed-
ing 99% has been achieved on motors rated at 2200 KV
(revolutions per volt). However, for motors with ratings
of 1400 KV or 2700 KV, the accuracy drops to the range of
80–90% [18]. On the other hand, acoustic signals obtained
from specially positioned microphones for detecting pro-
peller fracture faults have achieved classification accura-
cies above 99% using mel-frequency cepstral coefficients
(MFCC) and deep learning-based models [19].
As observed in the literature, most studies focusing on

mechanical fault detection in UAVs rely on vibration-based
conventional machine learning algorithms. Although studies
based on acoustic signals are relatively limited, high clas-
sification accuracies have still been achieved using MFCC
features in combination with deep learning approaches or
conventional classifiers such as DT and SVM. However, most
of these systems are constrained by narrow frequency bands
and focus primarily on propeller faults occurring under fixed
rotor speeds. In contrast, the present study aims to overcome
these limitations by proposing a hybrid deep learning model
that utilizes acoustic signals recorded via a microphone and
integrates wavelet scattering transform (WST) with LSTM
architecture. The proposed model is capable of simultane-
ously detecting both propeller damage and loosened rotor
screws with high accuracy.

In this study, acoustic signals were collected under real lab-
oratory conditions by flying the UAV at different speeds and
maneuvering scenarios. Nevertheless, due to the indoor envi-
ronment, wind effects were excluded from the analysis. The
signals were segmented into 1-second intervals. The multi-
layered time-frequency features of each signal were then
extracted using the Wavelet Scattering Transform (WST).
These extracted features were then integrated into an LSTM
network, enabling accurate classification of complex fault
patterns encountered in UAV systems. As a result, not only
was a high classification accuracy of up to 98.93% achieved,
but two different fault types (propeller damage and rotor
screw looseness) which had not been jointly addressed in
previous studies were successfully evaluated within a single
framework. Furthermore, the diversity of the data acquired at
various rotor andmaneuvering speeds under real environmen-
tal conditions enhanced themodel’s generalization capability.
In this regard, the study presents a meaningful innova-
tion in the literature by contributing both methodological
diversity and practical applicability to real-world UAV fault
diagnosis.

The key contributions of this study can be summarized as
follows:

• A novel hybrid framework combining Wavelet Scatter-
ing Transform (WST) and Long Short-Term Memory
(LSTM) is proposed for acoustic-based UAV fault
diagnosis,
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• The model enables simultaneous detection of two dis-
tinct fault types, propeller damage and rotor screw
looseness, based solely onmicrophone-recorded signals,

• Unlike previous studies that focus on either vibration
signals or a single fault type, this study demonstrates a
generalized solution over diverse flight scenarios with
high accuracy and robustness.

II. METHODOLOGY
A. EXPERIMENTAL SETUP AND DATA ACQUISITION
In this study, a quadrotor multicopter equipped with the DJI
A2 flight control system is used to collect data under real
flight conditions. The total weight of the multicopter, includ-
ing 6S LiPo batteries, is approximately 6 kg, with a wingspan
of 1.5 meters including the propellers. The propulsion system
consists of T-Motor MN3520 KV400 motors, each driven
by a T-Motor T60A ESC (Electronic Speed Controller). The
UAV is powered by a JETFIRE 40C LiPo battery (6 cells,
7000 mAh), and the propellers are made of carbon fiber with
a size of 16 inches. During the experiments, recordings are
collected at various rotor speed levels, which is critical for
identifying the corresponding operational frequencies. There-
fore, the rotational speeds of each rotor are measured using
a UNI-T brand non-contact tachometer, with a measurement
uncertainty of ±4.4 RPM. The tachometer is placed at a 1 cm
distance from the rotating propeller to determine both the
minimum and maximum RPM values.

In the UAV system, data were collected both during flight
and on the ground. During flight, the UAV was operated
at various speeds up to a maximum height of 10 meters
within an indoor laboratory environment, simulating real
flight conditions. Wind load effects were neglected. For per-
formance analysis and fault detection involving propeller
damage and rotor screw looseness, a total of 750 one-second
audio recordings were obtained. Each of these recordings
represents a single fault condition and was acquired inde-
pendently at different times, without further segmentation
i.e., each recording inherently corresponds to a 1-second
segment. Consequently, the dataset consists of 283 recordings
representing healthy condition (class 0), 307 representing
propeller damage (class 1), and 160 representing rotor screw
looseness (class 2). Although the classes are not strictly
balanced, the data were divided into 75% training, 15%
validation, and 10% testing sets. A 5-fold cross-validation
(k-fold=5) was also applied within the training data to
mitigate class imbalance and improve generalization. Fur-
thermore, each one-second.wav recording was assigned
exclusively to a single subset (training, validation, or test),
ensuring that no recordings from the same flight condition
appear in multiple sets. Since data acquisition time for rotor
looseness was limited due to flight safety concerns, this
class is represented with fewer samples. All recordings were
captured at a sampling rate of 48 kHz, which is a com-
monly used technical standard in audio processing, aligned
with the human auditory range (∼20 kHz) and the Nyquist

sampling theorem. This allows for detailed analysis of both
low-frequency rotor vibrations and high-frequency propeller-
related anomalies.

These recordings are stored as.wav format files on an
external PC equipped with an Intel(R) Core(TM) i5-8265U
CPU @ 1.60 GHz, 1800 MHz. During data acquisition,
rotor speeds range from 2300 to 8500 RPM on the ground,
9000 to 10000 RPM during hover flight, and 10500 to 12000
RPM during free maneuvering in the air. These different
speed levels are applied across three distinct test combi-
nations to ensure comprehensive fault coverage. First, the
baseline condition includes all propellers being balanced and
undamaged, with no looseness in any of the rotor connections,
representing a fully healthy state. Second, a fault condition is
created by loosening the rotor screws of only one propeller,
introducing a 1 mm physical gap to simulate rotor screw
looseness. Third, a damaged-propeller scenario is applied in
which a single propeller is intentionally damaged. Propeller
damage is considered as a single fault class, encompassing
light, moderate, and severe damage levels. Moreover, similar
conditions are tested individually for the other propellers
as well.

Figure 1 illustrates the experimental setup used in this
study, along with the propellers and their corresponding
fault configurations. As shown in the figure, the data are
categorized into three distinct classes: Class 0 represents
the healthy condition, where no propeller damage is present
and all rotor connections are intact. Class 1 corresponds to
propeller damage, and includes all recordings obtained with
light, moderate, or severe propeller faults, which are grouped
into a single fault class. Finally, Class 2 represents the faulty
condition in which only the rotor screws are loosened, with-
out any physical damage to the propeller itself.

B. WAVELET SCATTERING FEATURE EXTRACTION
The Wavelet Scattering Transform (WST) is a layered and
fixed-size transformation method developed to represent a
signal in a multiscale and time–frequency domain. This tech-
nique is both translation-invariant over time and capable
of extracting detailed frequency features without significant
information loss, making it a powerful tool for signal anal-
ysis. WST provides a representation that is robust to small
variations in the signal, statistically meaningful, and capa-
ble of revealing nonlinear relationships between frequency
components. As such, it is considered an effective feature
extraction technique for analyzing complex structural degra-
dations, such as those encountered in fault diagnosis.

The WST is implemented by applying a sequence of
wavelet transforms followed by modulus (absolute value)
operations in a hierarchical (layered) manner. The resulting
coefficients carry information related to the signal across
multiple scales and orientations. These coefficients form a
representation that is both sparse and resistant to distor-
tions [12], [20], [21], [22].Wavelet Scattering Transform
(WST) was preferred in this study due to its ability to
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FIGURE 1. Experimental UAV System for Acoustic-Based signal acquisition, sensor placement, and implemented fault scenario.

perform high-resolution, multi-layered analysis compared to
traditional time-frequency methods. Commonly used tech-
niques in literature, such as MFCC and STFT, operate
with fixed-length windows and therefore offer limited time-
frequency resolution. In contrast, WST utilizes multi-scale
wavelet filtering, allowing both low and high-frequency com-
ponents to be preserved along the time axis, resulting in
a more detailed representation. Furthermore, WST is more
robust to noise, produces fixed-size outputs, and can be
directly integrated with deep learning models. These proper-
ties makeWST highly suitable for the acoustic fault detection
tasks performed on UAV systems.

In this study, the initial step involves processing 750 sec-
onds of acoustic signals, denoted as x(t), which are acquired
from the UAV and exist in the continuous-time domain.
These signals are sampled at 48 kHz and segmented into
1-second intervals, resulting in a total of 750 segments. For
each segment, the signal length is N = 48kHz and it is
represented in discrete time as xs[n] ∈ RN . Each segment
is then convolved with a wavelet function ψ [n]centered at
a frequency λ1, as shown in (1).

U1 [n, λ1] =
∣∣xs [n] ∗ ψλ1 [n]

∣∣ (1)

The wavelet function ψλ1 [n] used in this study is defined as
a Morlet wavelet. The Morlet wavelet is widely employed in
multi-layered time–frequency analyses due to its favorable
analytical properties, [21], [23]. It is a complex component
modulated by a Gaussian envelope.

ψλ1 [n] = π−1/4.e−j2πλ1n/N .e−n
2/2σ 2 (2)

The Morlet wavelet is defined as shown in (2) [23]. In this
equation, the term e−j2πλ1n/N represents the complex carrier
signal, while e−n

2/2σ 2serves as the Gaussian envelope for
time scaling. As a result of the operation described in (1),
the outputU1 [n, λ1]provides a time–frequency localized rep-
resentation that captures the amplitude information of the
signal within a specific frequency band. This representation
is then convolved again with a second wavelet and followed
by another modulus operation to obtain the second-layer
coefficients, as shown in (3) [21].

U2 [n, λ1, λ2] =
∣∣U1 [n, λ1] ∗ ψλ2 [n]

∣∣ (3)

The second order scattering coefficients U2 [n, λ1, λ2] are
capable of accurately capturing modulations in the signal’s
frequency components, as well as transient acoustic changes
caused by rotor or propeller-related disturbances. The coeffi-
cients obtained from each scattering layer, namely U1 [n, λ1]
and U2 [n, λ1, λ2] are then filtered using a Gaussian-based
low-pass filter φj[n] with a scaling factor of2j. Through this
filtering process, the first- and second-order wavelet scat-
tering coefficients, S1and S2, are obtained as defined by (4)
and (5) [21], [22].

S1 [n, λ1] = U1 [n, λ1] ∗ φJ [n] (4)

S2 [n, λ1, λ2] = U12 [n, λ1, λ2] ∗ φJ [n] (5)

In this study, the feature coefficients obtained from Equa-
tions (4) and (5) are formatted into a feature matrix of
size 12 × 412 to be used as input to the LSTM net-
work. Here, 12 denotes the total number of scattering paths
extracted from both first order and second-order components,
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while 412 represents the number of time steps (frame sam-
ples) per segment. The wavelet scattering operations were
implemented usingMATLAB’sWavelet Toolbox and applied
to each signal segment xs[n] ∈RN , sampled at 48 kHz.Morlet
wavelets ψ[n], known for their favorable time–frequency
localization, were used in constructing the scattering net-
work. The first layer utilized 8 band-pass filters per octave,
and the second layer employed 1 wavelet, aligning with the
definitions of S1 [n, λ1] and S2 [n, λ1, λ2]. A time invariance
scale of approximately 0.5 seconds, defined by the low-pass
filter φj[n], was used to obtain stable temporal representations
across segments. The resulting time–frequency featurematrix
captures both local and global variations in the acoustic sig-
nals and serves as sequential input to the LSTM classifier.

C. LONG SHORT-TERM MEMORY (LSTM)
LSTM is a neural network architecture built upon the struc-
ture of artificial neural networks (ANNs). This type of ANN
belongs to the category of recurrent neural networks (RNNs),
yet it offers a more powerful structure compared to conven-
tional RNNs [24]. Owing to this capability, LSTM achieves
high accuracy, particularly in processing time-dependent
acoustic data and classifying fault types. Therefore, LSTM
is widely used in various tasks involving speech and acous-
tic recognition algorithms [25], [26], [27]. It has also been
extensively applied in data-driven diagnostics of rotating
machinery [28], [29].

The LSTM cell primarily consists of four key components:
the forget gate, input gate, cell state, and output gate. These
components determine how much of the past information is
retained and how much is updated at each step. Cell state can
preserve information over long time intervals and enables the
network to overcome the vanishing gradient problem. At each
time step t , the LSTM network updates its cell state and
output using the equations defined below [12]:

ft = σ
(
Wf [ht−1, xt ] + bf

)
(6)

it = σ (Wi [ht−1, xt ] + bi) (7)

C̃t = tanh (Wc [ht−1, xt ] + bc) (8)

Ct = ftCt−1 + it C̃t (9)

ot = σ (Wo [ht−1, xt ] + bo) (10)

ht = ot tanh (Ct) (11)

where xt is the WST feature vector at time step t. ht−1is the
hidden state from the previous time step, and ht is the current
hidden state. Also Wf , Wi and Wo are the weight matrices
for the forget gate ft , the input gate it , and the output gate
ot ,respectively. Similarly bf , bi and bo are the corresponding
bias parameters, Ct−1denotes the previous cell state,C̃t is the
candidate cell state, and Ct is the current cell state. σ is the
sigmoid function, calculated as shown in (12) [30].

σ =
1

1 + e−z
(12)

Here, the term z represents the weighted sum in the form
of W [ht−1, xt ] + b. As seen in the equations above,

this weighted sum is processed through the sigmoid function
at each gate.

Based on the LSTM cell structure, a custom LSTM net-
work is designed in this study to process time series features
extracted via WST as input. The WST coefficients obtained
from each audio segment are fed into the LSTM layer as
a time-step-based sequence, enabling the network to learn
temporal patterns within the data. The LSTM layer in this
architecture consists of 512 units, followed by a hidden
layer with 256 neurons and ReLU activation. The 512-unit
architecture selected for the LSTM model was determined
as the optimal configuration based on tests conducted on
different setups, providing the best balance between classi-
fication accuracy and computational load. The final output
layer is a three-class classifier, corresponding to the following
fault labels: Healthy (0), Propeller Damage (1), and Rotor
Looseness (2).
Figure 2 illustrates the overall architectural structure of

the proposed model. Additionally, Algorithm 1 presents the
algorithmic structure of the WST-LSTM model for real-time
applications. It explains how the trained model performs
step-by-step real-time fault classification based on 1-second
audio segments. The model processes each segment inde-
pendently and continuously classifies incoming data in a
streaming fashion.

The proposed model is trained using a supervised learn-
ing algorithm based on LSTM architecture. 75% of the
data is allocated for training. During training, the Adam
optimization algorithm is employed, which is highly effi-
cient for large-scale problems involving extensive data or
parameters [31]. The model weights are updated using the
Backpropagation Through Time (BPTT) algorithm, based on
the WST-based feature sequences. These updates aim to min-
imize the model’s prediction error. The cross-entropy (CE)
loss function is used throughout the training process [32].

LCE = −
1
n

∑n

t=1
Y Tt log

(
Ŷt

)
(13)

The CE equation is presented in (13). In this equation,
n denotes the number of samples in the mini-batch, and
Ŷt ∈ R3represents the predicted output vector obtained from
the final fully connected layer of the LSTM, expressed
as σ (Wht + b). The ground truth class vector is denoted
by Yt ∈ R3.

Regarding the evaluation of the model’s performance,
accuracy, precision, and F1-score values obtained from the
confusion matrix were utilized, along with the area under the
curve (AUC) values derived from ROC (Receiver Operating
Characteristic) curves. The ROC curves are used to assess
the model’s ability to distinguish between classes, with the
vertical axis representing the True Positive Rate and the
horizontal axis showing the False Positive Rate. These curves
provide a visual representation of the classifier’s discrimi-
native performance. Ideally, the curve proceeds from point
(0,0) to (0,1) and then to (1,1), where a trajectory closer
to the top-left corner indicates higher accuracy with fewer
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FIGURE 2. Block diagram of the proposed WST-LSTM model fault classification framework.

Algorithm 1 Real-Time Loop of the Trained WST-LSTM
Model
Hyperparameters: Segment duation T = 1sec, sampling frequency
fs=48kHz
Require: Trained LSTM model M
Require: Wavelet Scattering Transform configuration

1. Initialize system
2. while system is active do
3. Acquire 1-second audio segment xz ∈ R4000×t

4. Normalize xt if necessary
5. Apply WST on xz to obtain Wz ∈ R12

× 422
6. Transpose Wt to match LSTM input: W⊤

t ∈ R412×12

7. for t=1 to 412 do
8. Feed WT

t [t] into LSTM
9. Update hidden state ht, cell state Ct
10. end for
11. Extract final hidden state hT ∈ R512

12. Apply ReLU : a = ReLU (hT) ∈ R236

13. Compute output: ŷt = softmax(W · a + b) ∈ R3

14. Determine predicted class from ŷt
15. Output predicted class
16. end while

false positives. In contrast, a curve that lies near the diago-
nal suggests weaker class separability. Therefore, the AUC
value serves as a critical metric that summarizes the overall
classification performance of the model [33], [34].

III. EXPERIMENTAL RESULTS
A. FAULT CONDITION COMPARISON VIA WST
FREQUENCY ANALYSES
In this study, the average WST-based feature distributions
are analyzed for three different classes: healthy condition,

propeller damage, and rotor screw looseness. These anal-
yses provide important insights into the patterns left
by each fault type in the time–frequency domain and
feature space.

As shown in Figures 3(a) and 3(b), the frequency spectro-
gram corresponding to the healthy scenario reveals the pres-
ence of natural frequencies arising from the system’s struc-
tural characteristics particularly prominent around 8 kHz.

The average WST-based feature distribution indicates
that only a few low-index coefficients exhibit high ampli-
tude values. This suggests that even in a fault-free
condition, the system inherently carries information in a
limited number of frequency bands, with minimal energy
spread in the mid and high frequency ranges. In con-
trast, under propeller fault conditions as observed in
Figures 3(c) and 3(d), significant changes appear in the
frequency spectrogram.

While the system’s natural frequency components
remain visible, the energy is more broadly distributed
across the frequency spectrum. This behavior reflects
the presence of blade vibrations caused by rotational
imbalance.

Similarly, in the average WST feature distribution, a slight
reduction in energy is observed for low-index coeffi-
cients compared to the healthy case, whereas a noticeable
increase is seen inmid-band features (approximately between
indices 150–220). This indicates that propeller damage
not only affects the fundamental modes of the system
but also excites more complex sub-modes. Additionally,
slight increases in some high-index coefficients are also
observed.
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FIGURE 3. Time–frequency spectrograms (a, c, e) and corresponding average Wavelet Scattering Transform (WST) feature distributions (b, d, f) for
undamaged UAV, propeller damage only, and rotor looseness only conditions.
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Finally, when focusing specifically on faults caused by
rotor screw looseness, Figures 3(e) and 3(f) reveal an increase
in energy concentration at low-frequency components. This
indicates that low-frequency vibrations resulting from struc-
tural looseness are reflected in the system’s acoustic behavior.
The average WST-based feature distribution supports these
findings. In particular, a substantial number of coefficients
within the feature index range of 0–60 attain significant val-
ues, suggesting that low-frequency components have become
dominant in the system’s dynamic behavior. Moreover, in the
mid-band region especially between indices 180 and 220,
a noticeable increase is observed in certain coefficients,
implying that the looseness may gradually influence other
system modes over time.

In summary, when these three conditions are evaluated
collectively, the following general conclusions can be drawn:

•The healthy structure exhibits a stable and harmonic
energy distribution in the frequency domain and is repre-
sented in the WST outputs by only a limited number of
dominant components.

•Propeller damage causes the energy spectrum to spread
across a wider frequency band and leads to noticeable
increases in specific feature indices, particularly in the
mid-frequency range. This behavior can be associated with
rotational imbalance and aerodynamic disturbances.

•Rotor screw looseness predominantly affects the low fre-
quency region of the spectrum and activates a large number of
low-index components in theWST features. This is consistent
with the fact that structural looseness generates dominant
low-frequency vibrations within the system.

In conclusion, these findings demonstrate that WST-based
feature extraction plays a complementary and explanatory
role in distinguishing between different fault types. In other
words, the discrete distribution of WST features and the
transitions between frequency bands provide a highly dis-
criminative foundation for classification algorithms.

B. THE WST-LSTM MODEL PERFORMANCE
The classification performance of the proposed LSTM-based
model is evaluated using the receiver operating characteristic
(ROC) curve, which reflects AUC performance, and the con-
fusion matrix. The model demonstrates a high discriminative
capability across the three different conditions: 0 – Healthy,
1 – Propeller Damage, and 2 – Rotor Screw Looseness.
All classification performance analyses are conducted using
MATLAB R2024a, and the results are detailed in Figure 4
and Table 1.

As illustrated in the confusion matrix in Figure 4(a), the
alignment between the model’s predictions and the actual
labels is clearly demonstrated. Out of a total of 750 sam-
ples obtained from both healthy and faulty/problematic UAV
conditions, 742 were correctly classified using the proposed
WST & LSTM-based model, yielding an overall classifica-
tion accuracy of 98.93%. Specifically, for the health condition
(Class 0), 279 samples were correctly classified, with only
4misclassified as propeller damage. For the propeller damage

FIGURE 4. The Classification performance; (a) Confusion matrix results,
(b) ROC curve AUC performance.

condition (Class 1), 304 samples were accurately predicted,
while only 3 samples were misclassified. In the rotor screw
looseness condition (Class 2), nearly all the 160 samples are
perfectly distinguished, with only 1 misclassification.

Similarly, based on the ROC curves shown in Figure 4(b),
the AUC values were calculated as 0.9981 for class 0 (healthy
state), 0.9982 for class 1 (propeller damage), and 1.000 for
class 2 (rotor screw looseness). These high AUC scores
indicate that the model is highly capable of accurately dis-
tinguishing between all three fault categories. The proximity
of the curves to the upper-left corner of the plot suggests that
the true positive rate is maximized while the false positive
rate is minimized. In particular, the perfect AUC score of
1.000 for class 2 highlights the model’s exceptional abil-
ity to identify rotor screw looseness cases with near-perfect
precision.
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TABLE 1. Classification Performance Results.

The performance results presented in Figure 4 are further
detailed in Table 1. In summary, when the AUC values and
confusion matrix results are evaluated together, the over-
all classification performance of the model is found to be
exceptionally high. Both the ROC curves and the confusion
matrix confirm that the model operates in a balanced and reli-
able manner. The time-stepped features extracted via WST,
when processed by the LSTM network, provide powerful
and discriminative information for acoustic-based fault detec-
tion. These high accuracy rates further support the practical
applicability of the model in real-time UAV fault diagnosis
scenarios.

IV. DISCUSSION AND CONCLUSION
Existing UAV fault diagnosis studies in the literature have
typically been conducted under constant-speed and con-
trolled laboratory conditions. This limits the generalizability
of the proposed models, as they fail to adequately reflect the
variability of real-world flight environments. Furthermore,
many prior works have focused solely on either propeller
damage or arm screw looseness, often neglecting critical
mechanical faults such as rotor screw looseness [9], [10],
[11], [12], [13], [14], [15]. For instance, Al-Haddad and
Jaber [9] analyzed propeller faults using frequency compo-
nents and achieved 91% accuracy with an AUC of 0.98,
but their study was conducted only at a fixed speed. Sim-
ilarly, Gazali and Rahiman [15] proposed a Fuzzy Logic
and Neural Network-based approach for detecting arm
screw looseness in laboratory conditions. However, these
two fault types were not addressed concurrently in any
single model. In contrast, our study introduces an innova-
tive acoustic signal-based system capable of detecting both
propeller damage and rotor screw looseness using a uni-
fied framework. Additionally, the experimental setup was
designed to capture data across different throttle levels,
i.e., varying rotational speeds. This approach helps miti-
gate overfitting in the datasets and enhances the model’s
generalizability.

Moreover, in our previous study, vibration signals obtained
fromMEMS-based accelerometers and gyroscopes were suc-
cessfully used to detect both propeller faults and mechanical

looseness at rotor/arm joints. Two separate models were
developed for low-cost embedded platforms using Decision
Trees (DT) and Neural Networks (NN), respectively [7].
However, that earlier work relied solely on vibration data.
Due to the nature of frequency-based features and the
physical sensor placements, microstructural deformations
in some UAV regions could limit fault detection perfor-
mance. To address these limitations, the present second study
proposes a hybrid WST-LSTM approach using microphone-
based acoustic signals to identify both propeller faults and
rotor screw looseness. This architecture enables the extrac-
tion of multi-layered time-frequency features, effectively
distinguishing frequency transitions in each signal segment
with a high classification accuracy of 98.93%. Notably, for
structural failures such as rotor screw looseness, the model
achieved an AUC value of up to 100%, underscoring its
strength in both sensitivity and generalization. The excep-
tional performance of the proposed model stems from the
WST’s ability to extract deformation-stable, multi-layered
time-frequency features, combined with the LSTM network’s
capacity to learn temporal dependencies between them. The
joint evaluation of spectral amplitude information and tem-
poral patterns provides significant advantages in capturing
both low-frequency propeller faults and more irregular rotor
looseness cases. In other words, the model successfully
distinguishes between different fault types, including both
propeller damage and rotor screw looseness.

While some vibration-based studies employing LSTM and
WST architectures have achieved classification accuracies
up to 99% [12], they typically focus only on propeller
faults, disregarding rotor looseness and lacking acoustic
signal analysis. Similarly, although a few acoustic-based
fault diagnosis studies exist, they commonly rely on MFCC
features [19] and remain limited to propeller faults, ignor-
ing rotor-related issues. In our proposed WST-LSTM-based
hybrid model, acoustic signals are analyzed in a lay-
ered structure that captures both mid-frequency and high-
frequency components. The distinct time-frequency effects
of each fault type are isolated, enabling unified identifica-
tion of propeller faults and rotor screw looseness with high
accuracy.

Another notable contribution of this study lies in the com-
prehensive testing of all fault scenarios under varying rotor
speeds, with the UAV placed on the ground, hovering, and
in motion. This improves the model’s generalization capa-
bility. In this respect, the study distinguishes itself from
prior work, both methodologically and in terms of data
collected under diverse flight modes. Nonetheless, the pro-
posed system also has certain limitations. The current model
was trained under controlled testing conditions in a closed
laboratory environment with a fixed microphone position.
Therefore, the impact of background noise on model per-
formance was not evaluated in this study. It is anticipated
that environmental noise, wind effects, and variability in
microphone placement during real-time flights may influence
the system’s accuracy. Furthermore, while this study focused
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on post-acquisition signal processing, future research will
aim to develop a real-time fault detection system that can
not only acquire but also process the data instantaneously.
Accordingly, the system is planned to be tested under more
complex and noisy conditions and adapted for real-time
diagnostics.

In conclusion, this study introduced robust system archi-
tecture that combined WST features with LSTM network to
effectively detect both transient and continuous anomalies
in acoustic signals. It successfully addressed a gap in the
existing literature by demonstrating that both propeller dam-
age and rotor screw looseness could be identified within a
unified model using UAV flight data under various operating
modes. This achievement significantly advanced the capabil-
ities of acoustic-based fault diagnosis in UAVs, offering not
only high classification accuracy but also strong potential for
real-time implementation in practical UAV health monitoring
systems.

In future work, it is planned to develop a deployable system
that can simultaneously acquire and process acoustic data
in real-world conditions, considering the impact of environ-
mental noise, wind effects, and variations in microphone
placement on model performance.
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